Can you see it?

Jace Miller

December 14, 2005

1 Legendre Polynomials

The following definition of Legendre polynomials is taken from mathworld ${ }^{1}$.
The Legendre polynomials $P_{n}(x)$ can be defined by the contour integral

$$
P_{n}(z)=\frac{1}{2 \pi i} \oint\left(1-2 t z+t^{2}\right)^{-1 / 2}
$$

where the contour encloses the origin and is traversed in a counterclockwise direction.
The first few Legendre polynomials are

$$
\begin{gathered}
P_{0}(x)=1 \\
P_{1}(x)=x \\
P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right) \\
P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right) \\
P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right) \\
P_{5}(x)=\frac{1}{8}\left(63 x^{5}-70 x^{3}+15 x\right) \\
P_{6}(x)=\frac{1}{16}\left(231 x^{6}-315 x^{4}+105 x^{2}-5\right)
\end{gathered}
$$

Below is a picture of the Legendre polynomials for $x \in[-1,1]$ and $n=0,1,2,3,4,5$.

[^0]

One day while looking at a similar picture in a numerical methods book, I noticed that

$$
\int_{-1}^{1} P_{n}(x) d x=0
$$

for $n \in Z$ where $n>0$. Can you see how the area bounded by the x axis and each curve between -1 and 1 is equal?

[^0]: ${ }^{1}$ http://mathworld.wolfram.com/LegendrePolynomial.html

